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3.0 FURTHER TOPICS IN BOOTSTRAPPING

3.1 Introduction

There is much more to bootstrapping than can be covered here. T h e
book by Efron and Tibishirani (1993) provides a detailed reference. Some
useful further features are given here, and additional examples appear i n
subsequent chapters.

3.2 Estimates of bias

 Bootstrapping provides a handy way to check for bias in an est imate.
Suppose we calculate some statistic, such as the variance, from a set of data. We
would like that statistic to provide an unbiased estimate of the true p a r a m e t e r ,

σ 2. If we represent the statistic that we intend to calculate from the data as θ̂   =
s(x ), where x  is the vector of observed data, x1, x2, ..., xn and s(x ) is some
function of that data, then we would like to have the expected value of t h a t

function to be E(θ̂ ) = E[s(x)] = θ = σ2. When the theoretical distribution of t h e
estimator is known or assumed to be known, then an unbiased estimator c a n
often by found by the methods of mathematical statistics, i.e., we can find t h e
expected value of a trial statistic directly. Thus we know that the samp le
v a r i a n c e :

         s2 =  
Σ(xi- x

_
)2

n - 1     has expected value E(s2) = σ2 for the normal dis t r ibu t ion

of eq. (1.3). In this case, θ̂    = s(x) = s2 (the notation can be a little confusing, a s
we use the notation s(x ) to represent any statistic calculated from a data set, x ,
whereas s is also commonly used to represent a specific quantity, the samp le
estimate of the standard deviation).

Very often we are not sure what theoretical distribution may b e
appropriate for  an observed sample, and it is frequently true that there m a y
not be any such distribution. Statisticians thus spend a lot of time trying t o
choose the "right" distribution or manipulating (transforming) the data t o
approximate some known distribution. Bootstrapping can avoid a lot of t h a t
trouble and uncertainty. In this section we consider how bootstrapping can b e
used to check for bias in an estimator. We define bias as:

                                                     biasF = EF[s(x)] - t(F)                                 (3.1)

where the subscript F serves as a reminder that the bias and expectation a r e
taken with respect to some probability distribution function F (quite likely a n
unknown distribution), and θ  = t(F) denotes our statistic as calculated from t h e
true probability distribution. The bootstrap estimate of bias is calculated as:

                                                         biasB^   = θ̂ *( .) - t(F̂ )                                (3.2)

where  θ̂ * ( .) is the mean of our estimator calculated from a large number o f
bootstrap samples, and t (F^ ) is the same estimator calculated from the o r i g i n a l
data.   
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Example 3.1. A numerical example from a normal distribution may help fix
ideas at this point. The following 10 "observations" are from a normal
distribution with mean zero:

1.6718,-3.061,0.9338,2.8766,-1.248,2.6206,0.3212,-1.121,0.0475,1.7129

Consider estimating the variance of these observations from:

                                                             s2 =  
Σ(xi- x

_
)2

n                                     (3.3) 

This is the equation for variance often used by engineers, and produced
by some of the earlier pocket calculators. If we apply the formula to

the 10 original observations it gives t ( F̂ ) = 3.177. Now calculate the

average of 2,000 bootstraps using this estimator. This gives  θ̂ * ( .) =
2.799, and we get:

                              biasB^   = θ̂ *( .) - t(F̂ )  = 2.799 - 3.177 = -0.378,

a negative bias, suggesting that we have an underestimate. From theory,
we know that an unbiased estimator comes from   

                           s2 = 
S(xi- x

_
)2

n-1
   

which gives us s2 = 3.530 from the above data set. Our bias estimate is
negative, meaning that we underestimate the true quantity. We could thus
add this quantity, 0.378, to our underestimate from the original data,

t(F̂ ) = 3.177, getting an improved estimate (3.555). It is perhaps
better to define a bias-corrected estimator : 

  θ~  =  θ̂  + [θ̂  - θ̂ *(.)] = 2 θ̂  - θ̂ *(.)  = 2(3.177) - 2.799 = 3.555                    (3.4)

which gives the same result. This is close to the result (3.530) one

would get by using the proper equation s2 = 
S(xi- x

_
)2

n-1
   in the first

place. The point here is that we often don't know what the proper
equation is, and the bootstrap provides a way to check for bias in
whatever equation we do have available to estimate some quantity. Eq.
(3.4) came very close to the correct answer in this example, but in
practice, if we have indications of an important bias, simply correcting
by eq.(3.4) may not necessarily improve the situation. The estimator may
be subject to a great deal of variability, so that the adjustment may
not help. The essential conclusion here, is that if the bootstrap
indicates small bias and small standard error, then we can be very
comfortable indeed with our estimator, even if we don't have a
theoretical model. Note that this result came out very close to the
expected answer just by chance; repeating it gives a smaller bias, as
will likely be evident in Exercise 3.10.1.

3.3 An improved bias estimate

 Efron and Tibishirani (1993:Ch. 10) recommend an improved b i as
estimate that converges on the asymptotic estimate with a smaller boo ts t rap
sample, B. They define a resampling vector for each bootstrap sample t h a t
contains the proportions of that bootstrap sample calculated from t h e
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frequencies with which the individual entries are observed. Thus in Fig. 2.1,
the original data set was:

1 2 3 4 5 6 7 8 9 10
13 106 203 131 160 8 67 61 11 301

and the resampling vector for the first bootstrap sample of Fig. 2.1 would be:

0 0.4 0.2 0 0.2 0.1 0 0 0 0.1

that is, 13 doesn't appear at all, but 106 appears 4 times, and so on. They t h e n
average these B resampling vectors, obtaining a final vector with t h e

proportions averaged over all B vectors, denoted as P
_

 * and use this instead o f
t ( F̂ ) in eq.(3.2), obtaining,

                                                
biasB
_____

 
 
=  θ̂  *( .) - T( P

_
 *)                                       (3.5)

Example 3.2 We can illustrate the improved bias correction by using the

original data of Example 3.1, but using B = 500. The proportions of P
_

 *

will add to unity and T( P
_

 *) is then calculated as a weighted variance,

using the proportions of  P
_

 * as weights(wi). The weighted mean is  x
_
 w =

Σwixi, and the variance is calculated as  s2 =  
Σwi(xi- xw

_
)2

n  . A run with B =

500 gave
 
biasB
_____

 
 
=  θ̂  *( .) - T( P

_
 *)  = 2.910 - 3.223 = -0.313 and bias-corrected

estimate of s2 is then 3.536, which is very close to the result (3.530)
obtained by dividing by n-1, as should be done in practice.  I would be
inclined to use this approach on complicated problems, where
bootstrapping uses a fair bit of computer time. Otherwise, one can
simply use a sizable number (say 2,000) of bootstraps as in Example 3.1,
inasmuch as it is likely that percentile confidence limits will be also
be calculated in a practical example--here we know the “right” answer
(i.e., divide by n-1) from theory.

3.4 Cross-validation

Models applied to ecological data may serve various purposes, but t h e
more important uses may be to see how well we understand the data, and t o
make predictions. One of the earliest approaches to evaluating p red ic t ions
from a model is very simple. One develops and fits the model on half of t h e
available data, and then tests its predictions on the other half. Using all of t h e
data for development and testing invariably results in underestimating t h e
prediction errors. With the increased computing power now available, models
can be fit to various subsets of the data and tested on the remainder. T h e
logical outcome appears to be fitting the model to all but one of t h e
observations, making a prediction for the remaining observation a n d
repeating the process for all n observations, getting n predictions a n d
deviations from predicted value. The variance is then calculated as:
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                                                     CVE = 
1
n   Σ (yi  - ŷ 

-i
 )2                                 (3 .6)

where  ŷ 
- i  

denotes a predicted value based on all of the observations except

the ith value, and the summation runs from 1 to n. One thus deletes o n e
observation, fits the model, and makes a prediction for the missing va lue ,
doing this n times to calculate the cross-validation error, CVE.

Example 3.3 Cross-validation error. To demonstrate the cross-validation
idea, we use a larger set of regression data (n = 30). The data are as
follows:

No. x y No. x y

1 14.48 18.30 16 10.00 17.60

2 22.49 19.98 17 20.06 19.33

3 19.71 18.51 18 9.70 17.89

4 29.89 21.00 19 26.86 20.79

5 30.01 21.00 20 34.23 20.36

6 21.61 19.77 21 27.53 20.65

7 16.71 18.77 22 19.88 18.82

8 26.78 20.26 23 21.99 19.26

9 17.85 18.70 24 21.09 20.02

10 33.04 20.25 25 28.68 20.38

11 18.92 18.66 26 21.91 19.61

12 20.23 18.45 27 28.50 20.45

13 28.24 20.60 28 20.01 18.93

14 29.77 21.10 29 17.62 19.09

15 22.92 19.24 30 22.90 19.87

Applying cross-validation is simple in this case, with the only
difficulty being one of arranging to drop each observation in turn We
then can compute CVE from eq.(3.6), which turns out to be 0.201. Note

that the values of  ŷ  
-i 

in eq. (3.6) are computed from individual

regressions dropping the ith point, and yi is the y-value of the ith

observation. For comparison the value of the variance about regression
(eq.(2.5)) is 0.182. This is somewhat smaller, as might be expected
because the deviations from regression are from a normal distribution in
this example, and thus the normal-theory model gives the best estimate.
Cross-validation would be used only in the absence of suitable
theoretical estimators for the model parameters.

3.5. Bootstrapping for predictions.  According to Efron and T ib i sh i ran i
(1993:Chap. 17) bootstrapping offers an alternative to cross-validation. T h e y
focus on estimating the variance (in this example, variance about r e g r e s s i o n
as given by eq. (2.5)).  There are two stages in the bootstrapping approach. T h e
first is to obtain bootstrap samples from the data set (given in Example 3.3),
calculate regression lines for each bootstrap sample, and calculate a v a r i a n c e
about each such regression (eq.(2.5)) using the original data set as xI and yi
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values. The second stage is to calculate the variance about regression for t h e
bootstrap sample now using only the bootstrap sample (the yi * values). Thus,
two variances about regression are calculated from the same r e g r e s s i o n
equation, using the following variances (the regression coefficients are t h o s e
calculated on the bootstrap data in both cases):

     s2 =  
Σ( ( ))y a bx

n
i i− +

−

2

2
    and    s2 =  

Σ (y i *  -  (a + bxi * ))2

n  -  2          

Often, the variance about regression obtained from the bootstrap samp le
will be appreciably smaller than that obtained from the original data; and it i s
the mean difference of these two variances that is sought here. A few va lues
from bootstrapping follow:

Bootstrap no. Variance about Variance about Difference
regression regression
using orig. using bootstrap
data for y
and x

values of y
and x

1 0.1786 0.1905 - 0 . 0 1 1 9
2 0.1804 0.1863 - 0 . 0 0 5 9
3 0.1820 0.1519 0.0301
4 0.1724 0.1514 0.0210
5 0.1814 0.1759 0.0055
6 0.1948 0.1301 0.0647
7 0.1863 0.1277 0.0586
8 0.2023 0.1449 0.0574
9 0.1731 0.1189 0.0542

 The "inflation factor" (mean difference) is added to the variance of t h e
original data set to give an improved estimate. In the present example, t h e
mean difference in the two variances about regression is small (0.028) so
adding it to the variance about regression calculated from the original da ta
(0.184) makes only a minor change. However adding the correction to 0.184
gives a value (0.212) closer to that obtained in example 3.3. Nonetheless t h e
best estimate is that of the original regression calculation because the data o f
Example 3.3 were generated from a bivariate normal distribution. Note that t h e
bootstrap operation is a sampling procedure so that there will be sma l l
differences in the mean differences in repeat runs. Two further runs w i t h
B=2000 gave mean differences of 0.027 and 0.029.
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Fig. 3.1. Mean differences between variances about regression calculated f r o m
2000 bootstraps. The differences are between variances about r e g r e s s i o n
calculated from a regression line based on an individual bootstrap sample ,
with the first variance calculated using the original data, and the second
calculated from the data of the particular bootstrap sample.

It turns out that the correction indicated above is really a correction f o r
bias. Inasmuch as the data we used in this example were normally d is t r ibuted,
the variance estimate should be unbiased, and the bootstrap ana lys i s
consequently comes up with a minor change, as would be expected with a n
unbiased estimator. The data used were drawn from a bivariate n o r m a l
distribution, which is the basis for the normal theory confidence limits on a
correlation coefficient, so it is worthwhile to compare (Fig. 3.2) the con f i dence
limits on r based on nonparametric bootstrapping with the normal t h e o r y
limits in this example. The two different calculations of confidence limits a r e
now appreciably closer than they were in Example 2.4. However, r e g r e s s i o n
data approximating the bivariate normal distribution are not o f t e n
encountered in practice, because one usually somehow selects the x -va lues
used, rather than obtaining them at random, as the bivariate n o r m a l
regression theory assumes.
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Fig. 3.2. Distribution of 2,000 bootstrap samples for correlation coe f f i c ien t
obtained from the data of Example 3.3. Solid lines show approximate 95%
confidence limits based on bootstrapping, while dotted lines show 95% l imi ts
based on normal theory (see Example 2.4).
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3.6 Improved confidence intervals

 Efron and Tibishirani (1993:Chap. 14) recommend an imp roved
bootstrap confidence interval which they call the BCa method ( "b ias-cor rec ted
and accelerated"). These intervals require more calculations than the s imp le
percentile bootstrap confidence intervals. The data from Example 3.3 will b e
used to illustrate. Two proportions, α 1 and α 2 are calculated, and the tota l
number of bootstraps, B, multiplied by these values. One then orders the B
bootstrap values and takes the α 1B and α 2B values as confidence limits. Thus i f
B = 2,000 and α 2 turns out to be 0.0166 as in the example here, then we take t h e
bootstrap value 0.0166(2000) = 33 as the ordered value of the boots t rap
replications that gives the lower confidence limit.

Two initial values are calculated. The first is a bias-correction:

                                     z^ o = Φ−1(#{ θ̂*(b)< θ̂}
B  )                            (3.7)

here, Φ − 1( ) indicates the inverse of the cumulative normal distribution, w h i c h
can be looked up in tables and is available in various computer programs ( i n
Microsoft Excel it is "NORMSINV)". The quantity in parentheses has, a s
numerator, the number of bootstrap samples that are less than the p a r a m e t e r
estimate. In the example given below, we consider the correlation coef f i c ien ts
of Section 3.5, for which the correlation coefficient calculated from t h e
original data was r = 0.9043, so we tally the number of bootstrap results t h a t
were less than this value and divide by B = 2,000, and look up the i n v e r s e
cumulative normal value. In this case (Fig. 3.2) there were 942 values less t h a n
r = 0.9043, so we look up 942/2000 = 0.471 in the inverse normal tables, g e t t i n g

–0.0728  for  z^ o.

The second value is the "acceleration", a^ . This is calculated by j a c k k n i f i n g ,
(Section 3.7) using much the same procedure as in the cross-va l idat ion
example above. We delete each observation in the original data set in turn, a n d
calculate the correlation coefficient from the remaining observations. F rom
the 30 observations tabulated in Example 3.3, we thus get 30 co r re l a t i on

coefficients, which are here designated as θ̂(i)  , where the subscript ( i )

indicates that the parameter estimate θ̂  (here, r)  has been calculated from t h e

original data set with each observation deleted in turn, and  θ̂(.)  is used t o
indicate the average of these 30 values. The estimate of "acceleration" is t h e n
calculated as:

                                    a^  = 
Σ
Σ

( √ . √ )
{ ( . ) }

( . )
(

( ( )
/

) ( )θ θ
θ θ

− i

i

3

2 3 26
3 8

) -
                                   

where the summations are from 1 to n = 30 in this example. These two

parameters ( z^ o, â ) are then used to calculate α 1 and α 2, but require two m o r e

values for the calculation. These are designated z(α ) and z(1- α ), and are t h e
values that cut off a proportion, α , from each tail of the unit n o r m a l
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distribution.. For 95% confidence limits, we look up z(α ) as 0.975 in the i n v e r s e

cumulative normal table, getting -1.95996, and use 0.025 for z(1- α ), giving -
1.95996. The calculations then are:

                                     α1 = Φ[  ẑ o + 
 ẑo  +   z(α )

1  -   â(  ẑo + z(α ))
  ]                 (3.9)

a n d

                                    α2 = Φ[  ẑ o + 
√

√( )

( )

( )

z z

a z z

o

o

+
−

−− +

1

11

α

α ]

where values of Φ( ) are to be looked up in tables of the cumulative n o r m a l
distribution (in Excel, these are available as NORMSDIST). As noted in t h e
introduction to this section, the lower limit is the 33d ordered value of t h e
bootstrapped correlation coefficients (0.825), and the upper limit is α1B =
0.964(2000) giving the 1927th ordered value (0.957).

The calculations are a little onerous to produce the first time, but if t h e y
are set up in a spreadsheet, then calculations for a new set of confidence l imi ts
only take a few changes. One is to insert the new set of jackknife values in t h e
first column and the second is to change the fraction in eq. (3.7). If the samp le
size is different, one needs to expand or contract the spreadsheet. An example
for the data of Example 3.3 is given below.

The improvement in bootstrap confidence limits in this example is not
large, but suggests that the calculations do result in better bootstrap
confidence limits. Data for Example 3.3 came from a bivariate normal
distribution in which ρ  = 0.90. From normal theory, 95% confidence limits were
0.803 to 0.954, while the percentile bootstrap limits in one run with B = 2,000
were 0.830 to 0.959. The improved confidence limits were 0.825 to 0.957, giving
a lower limit closer to the normal theory result. Percentile limits vary a little
in successive runs, giving 0.837-0.958 and 0.833-0.960 in two additional runs
with B = 2,000.

Correlations CUBE TERM SQ TERM
1 0.8978444 2.67703E-07 4.1537E-05
2 0.9075823 -3.57065E-08 1.08434E-05
3 0.9083542 -6.71633E-08 1.6523E-05
4 0.8996521 9.97194E-08 2.1504E-05
5 0.8993546 1.2017E-07 2.43518E-05
6 0.9066940 -1.39052E-08 5.78254E-06
7 0.9018049 1.53344E-08 6.17225E-06
8 0.9027515 3.63677E-09 2.36489E-06
9 0.9018945 1.37354E-08 5.73536E-06

10 0.9181345 -2.65399E-06 0.00019169
11 0.9038609 7.86151E-11 1.83515E-07
12 0.9118957 -4.40089E-07 5.78576E-05
13 0.9013883 2.4416E-08 8.41621E-06
14 0.9008332 4.12818E-08 1.19446E-05
15 0.9065879 -1.2145E-08 5.28363E-06
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16 0.8874195 4.80101E-06 0.000284591
17 0.9044161 -2.03529E-12 1.60602E-08
18 0.8932690 1.3384E-06 0.000121448
19 0.9068001 -1.58286E-08 6.30419E-06
20 0.9205568 -4.30489E-06 0.000264632
21 0.9029564 2.36797E-09 1.77658E-06
22 0.9045651 -2.09626E-11 7.60263E-08
23 0.9048018 -1.34558E-10 2.62587E-07
24 0.9130072 -6.62566E-07 7.6001E-05
25 0.9019668 1.2528E-08 5.39412E-06
26 0.9047293 -8.51567E-11 1.93559E-07
27 0.9014553 2.27629E-08 8.03189E-06
28 0.9040066 2.26062E-11 7.995E-08
29 0.9046723 -5.61539E-11 1.4664E-07
30 0.9054246 -1.46324E-09 1.28887E-06

AVERAGE 0.9042893 -1.44489E-06 0.00118043 SUMS

Z(0)-HAT -0.07276
ACCELERATION -0.0059377

Z(0)-HAT+Z-ALPHA 1.88716 1.95996
1-ACCEL(Z(0)-HAT+Z-ALPHA) 1.0112055

RATIO 1.8662478
ALPHA1 0.9635494 1927.0988

Z(0)-HAT+Z(1-ALPHA) -2.03276 -1.95996
1-ACCEL(Z(0)-HAT+Z(1-ALPHA) 0.987930

RATIO -2.057595
ALPHA2 0.016569 33.139

3.7 The jackknife

The jackknife technique, as noted in the introduction to Chapter 2, p r e -
dates bootstrapping, and was originally derived (Quenouille(1956)) to eva lua te
biases in an estimator. The technique is very simple and easy to apply. G iven
an original data set, one simply leaves out each observation in turn a n d
calculates the statistic of interest on the remaining observations, as was d o n e

in the calculations for improved confidence limits above, getting  θ̂ (i)  = s(x ( i) ) ,

where x ( i)  is the vector of observations with the ith observation removed, a n d
s() denotes some statistic calculated from these observations. The bias es t imate
is calculated as:

                                           bias^  jack = (n-1)( θ̂ (.)  -  θ̂  )                                 (3.10)

where  θ̂ (.)  denotes the mean of the  θ̂(i)   and  θ̂  is the statistic estimated f r o m
the original data. The jackknife estimate of standard error is:

                                      se^  jack = [
n-1
n   Σ (  θ̂ (i)  -  θ̂ (.) )2] 1/2.                        (3.11)

We can illustrate the calculations with the data of Example 2.1. T h e
following table shows the 10 original observations and the 10 j a c k k n i f e
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samples created by dropping each observation in turn. If we consider t h e
mean as the statistic to be jackknifed, then the bias estimate from eq.(3.10)
turns out to be zero, inasmuch as the mean of the original observa t ions
necessarily equals the grand mean of the jackknife samples.

Orig. Jackknife samples
data 1 2 3 4 5 6 7 8 9 10
13 13 13 13 13 13 13 13 13 13
106 106 106 106 106 106 106 106 106 106
203 203 203 203 203 203 203 203 203 203
131 131 131 131 131 131 131 131 131 131
160 160 160 160 160 160 160 160 160 160
8 8 8 8 8 8 8 8 8 8
67 67 67 67 67 67 67 67 67 67
61 61 61 61 61 61 61 61 61 61
11 11 11 11 11 11 11 11 11 11
301 301 301 301 301 301 301 301 301 301
Ave. 116.4 106.1 95.33 103.3 100.1 117 110.4 111.1 116.7 84.44

Eq. (3.11) gives  se^  jack = 30.15, while a bootstrap estimate of standard error
[eq.(2.1)] is 28.70, and the standard error of the original data is also 30.15, as it
should be in this case, because the jackknife standard error formula gives the
same result for the standard error of a mean.

Example 3.4 Jackknifing a  regression equation

Grizzly bears are very difficult to census due to the fact that
they tend to stay in heavy cover when food conditions are good and are
thus not visible from the air. Also, they range very widely, are
difficult (and somewhat dangerous) to trap and are not numerous. Adult
females with cubs-of-the-year may tend to spend more time in the open
than other bears, and such family groups can be approximately identified
by group size, age of cubs, location, etc. Consequently the only long-
term index of abundance for bears in Yellowstone has been an annual
"count" of such family groups. The index is quite variable, so it is
essential to learn as much about the effect of variability as possible,
and to look for ways to improve the index. For further study here,
logarithms of the index count are used because a  linear relationship
would result if the counts are directly proportional to population
abundance. A plot of the data (Fig. 3.3) shows the substantial
variability.

The jackknife, the bootstrap, and cross-validation can be used to
study the index. To use the jackknife approach, one proceeds as in the
example shown in Section 3.7. There are 19 annual values of the index,
so the original data are copied 19 times, and each of the paired items
(year and ln count) is removed in turn and placed at the top of the
table. The gaps in the main body of data are then filled by moving the
data below up one cell. For each of the paired columns of data, one then
estimates a slope (using the SLOPE function in EXCEL) and calculates the
intercept from y and x means. This thus gives the basis for a regression
line at the bottom of each set of data. This regression line is then
used to compute an estimate for the missing point (using the x-value at
the top of the table) and that prediction is placed below the value left
out located at the top of the table. The resulting 19 data pairs then
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provide data for calculation of CVE by eq. (3.6). The first two columns
of a calculation appear in a table below.

1 9 9 41 9 9 21 9 9 01 9 8 81 9 8 61 9 8 41 9 8 21 9 8 01 9 7 81 9 7 6
1.0
1.2
1.4
1.6
1.8
2.0
2.2
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2.6
2.8
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3.4
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y =  - 71.721 + 3.7518e-2x   R^2 = 0.422

Fig. 3.3 Index of grizzly bear abundance in Yellowstone National
Park.

The slope estimates at the bottom of the table are used to
jackknife the data for calculating a standard error from eq. (3.11)
which turns out to be 0.0104. This is perhaps most useful if divided by
the jackknife mean, giving a coefficient of variation of 0.28,
indicating the considerable variability in the data. The data can also
be used to calculate the jackknife bias estimate of eq.(3.10), which
appears to be very small. The operation can be described in steps as
follows:

(1) Duplicate the two columns of data (x and y variables) n times,
where n is the number of observations available.

(2) Remove each value in turn and put it above the table of
values, leaving space for a predicted value.

(3) Move up the data to close the gaps.

(4) Calculate slopes and x and y means for each column.

(5) Use this regression data to calculate a predicted value for
the x-value of the item removed from that column and place the
predicted value below the removed value. The squared difference is
then summed and divided by n to calculate CVE.

(6) Use the calculated slope values to produce jackknife estimates
of standard error and bias.

All of the above provides some information on how an index
behaves. It is, however, more useful in the situation where we have
several possible candidates for an index, as the estimates of bias and
CVE (and possibly other statistics calculated for the data) can be used
to decide which of the candidates might give the best notion of trends
in the bear population, which is of major importance in managing an
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important species. An improvement in the index is available by way
auxiliary variables that provide a correction for the variation in
visibility of bears, which presumably is at least partially responsible
for fluctuations in the number seen from year to year. This improved
index was described by Eberhardt et al.(1999).

Table of first few columns of data from Jackknifing bear index.

LEDT OUT 2.8332 1 2.5649 2
PREDICT 2.3140 2.4304
DEV SQ 0.2696 0.0181

ORIGINAL DATA
LN COUNT
Y X Y X Y X

1976 17 2.8332 1 2.5649 2 2.8332 1
1977 13 2.5649 2 2.1972 3 2.1972 3
1978 9 2.1972 3 2.5649 4 2.5649 4
1979 13 2.5649 4 2.4849 5 2.4849 5
1980 12 2.4849 5 2.6391 6 2.6391 6
1981 14 2.6391 6 2.3979 7 2.3979 7
1982 11 2.3979 7 2.5649 8 2.5649 8
1983 13 2.5649 8 2.8332 9 2.8332 9
1984 17 2.8332 9 2.1972 10 2.1972 10
1985 9 2.1972 10 3.2189 11 3.2189 11
1986 25 3.2189 11 2.5649 12 2.5649 12
1987 13 2.5649 12 2.9444 13 2.9444 13
1988 19 2.9444 13 2.7726 14 2.7726 14
1989 16 2.7726 14 3.2189 15 3.2189 15
1990 25 3.2189 15 3.1781 16 3.1781 16
1991 24 3.1781 16 3.1355 17 3.1355 17
1992 23 3.1355 17 2.9957 18 2.9957 18
1993 20 2.9957 18 2.9957 19 2.9957 19
1994 20 2.9957 19
MEANS 2.75 10.0 2.75 10.5 2.76 10.4
SLOPES 0.0375 0.0457 0.0394
INTERCEPTS 2.3776 2.2683 2.3516
S.S. OF SLOPES 0.0001 0.0000

3.8 The Monte Carlo method

 In many situations, it is desirable to seek a way to check on the va l id i ty
of possible estimators. If the stochastic process leading to the data under s tudy
can be modelled in a realistic manner, then it is usually possible to tes t
estimation and analysis methods by "Monte Carlo" simulations. Many detai led
papers and a sizable number of books deal with such approaches, and all t h a t
will be attempted here is to provide a sketch of the method, and a s imp le
example. Exercise 1.16.6 discusses simulation of a continuous f r e q u e n c y
distribution, the exponential distribution. The underlying model for s u r v i v a l
times is, in fact, the exponential, although survival may also need to b e
described by more complex models. Given a way to generate a sample from a
plausible distribution, one can then use such data to test estimation or ana lys i s
schemes.

For a concrete example, we consider the percentile confidence l imi ts
discussed in Chapter 2, and demonstrated in Fig. 2.2, and ask whether t h e s e
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limits are valid. This question is usually discussed in terms of coverage. Fo r
convenience, consider 95% confidence limits. These are described as l imi ts
that should include the true but unknown mean in 95% of a very large se r i es
of repetitions of the same process from which a given observed sample i s
generated. Note that nothing is said about a particular case -- it is only t h e
long-run average that we can depend on. If confidence limits are p r o p e r l y
constructed, then they should "cover" the (unknown) true mean 95% of t h e
time. If we assume that observed survival time data come from an exponen t i a l
distribution, then we can generate a very large number of samples of n = 20
"observations", calculate bootstrap confidence limits from these samples, a n d
see how well they "cover" the true mean. In this case, we can know the t r u e
mean, inasmuch as it can be calculated for the exponential distribution, E(x) =
1/β. Using β = 0.01 results in an expected ("true") mean of 1/β = 100.

A BASIC program (Program EXPON SIMUL) was used to study t h e
confidence limits. It turns out that 1,000 simulation runs with 1,000 boots t raps
for each sample of n = 20 yields 906 cases where the calculated p e r c e n t i l e
limits included the true mean of 100, whereas one would expect 950 cases ins ide
the limits for a true 95% level of significance. Note that this result (906 o f
1,000) is subject to sampling error; a binomial calculation gives v(p) = p ( 1 -
p)/1000 where p = 0.95, so that two standard errors on p will be about 0.013.
Consequently, it would appear that the bootstrap "coverage" is s i gn i f i can t l y
short of the expected 95%. Nonetheless a nominal 91% isn't too bad f o r
confidence limits. Fig. 3.4 provides an example of coverage from this study.

The exponential distribution is sharply skewed and the s tanda rd
deviation equals the mean so that the survival time thus generated is h i g h l y
variable. For an alternative, we can run the Monte Carlo study using n o r m a l l y
distributed variables with the same mean (100) and a smaller s tanda rd
deviation (10). This can be done by using the Box-Muller approx imat ion
(Bratley et al. 1983) to generate unit normal random variables, replacing t h e
exponential in a BASIC program. This generates two approximately n o r m a l
random variables with zero mean and variance of unity from two u n i f o r m
random variables, and these are then transformed to have standard dev ia t ion
of 10 and mean of 100. Running 1,000 simulations each using 1,000 boots t raps
on samples of n = 20 from the normal distribution gives coverage of 931,
appreciably closer to the expected 95%.



3.14

2 5

5 0

7 5

1 0 0

1 2 5

1 5 0

1 7 5

2 0 0

2 2 5

2 5 0

Observations

Fig. 3.4. An example of "coverage" for the simulation to test boo ts t rap
percentile limits on simulated data from an exponential distribution. T h e
figure shows confidence limits for a sample of 20 observations out of the 1,000
simulations used to test confidence limits calculations (with 1,000 boots t raps
per sample of 20 observations). The dotted line shows the position of the t r u e
mean of 100, while squares represent upper 95% confidence limits and c i r c l es
the lower limits. Lines connect the limits for the three cases where the l imi ts
did not include the true mean. In this sample, coverage was 17/20 = 0.85.

Inasmuch as we are dealing with means, the usual approach t o
confidence limits would be to calculate a variance from the original data, a n d
obtain confidence limits with a multiplier from the t-distribution. Such resu l t s
can easily be simulated, using the same methods for generating exponen t i a l
and normal random variables. Program T SIMUL NORM was used to s imu la te
samples and confidence limits from the normal distribution, and the s a m e
program was used with the exponential generator. Results using sample sizes
of n = 10, 20, and 30 appear in the following table. These results suggest t h a t
constructing confidence limits in the usual manner from exponential da ta
does a little better job than bootstrapping, and for data from a n o r m a l
distribution the limits are within sampling error of the expected 95%, wh i l e
bootstrapping falls a little short. One would not, of course, use bootstrapping t o
obtain confidence limits on means. It is best reserved for situations w h e r e
there is no convenient theoretical approach.

Sample Exponential simulation Normal simulation
size Bootstrapping Usual limits Bootstrapping Usual limits

1 0 8 3 7 9 0 0 9 0 4 9 4 4
2 0 9 0 6 9 2 3 9 3 1 9 4 1
3 0 9 2 7 9 2 1 9 3 3 9 5 3

3.9 The delta method

 The delta method is a useful adjunct to bootstrapping. It has been used
for many years to approximate the variance of complex functions of r a n d o m
variables. It is obtained from a Taylor expansion of the function in which t h e
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second degree terms are retained, and rearranged to represent variances o f
the random variables. The expression is as follows:

where V[g(x)] represents the variance of some function, g(x ), where x  is a
vector of random variables, x1,x2, ... ,xn. V(x i) denotes the variance of t h e
variable xi , which is multiplied by the square of the partial derivative of g (xi ) .
Covariance terms are calculated for those cases where i<j. In many cases, i t
may be that the random variables are independent, so that the c o v a r i a n c e
terms can be assumed to be zero, and the right-hand portion of eq.(3.12) c a n
then be dropped.

Bootstrapping can be used to calculate a variance for g (x ) without a n y
need to calculate variances and covariance of the individual random va r i ab les
or to obtain partial derivatives. The delta method becomes a valuable ad junc t ,
however, when it is possible to design the study in order to minimize V[g( x)] .
In practice, V[g( x)] may be appreciably larger than is desirable, and we m a y
wish to design a new study with larger samples (or to supplement the ex is t ing
samples). In this case, it is essential to be able to determine the effect o f
increasing the sample sizes for individual random variables. The delta me thod
provides a way to calculate the effects of changing sample sizes on the ove ra l l
v a r i a n c e .

Example 3.5 Application of bootstrapping to a complex function.
Obtaining a variance for the Lotka-Leslie model provides a good example
of the utility of bootstrapping. The underlying equation for this model
is:

                                              1 = Σ λ-x  lx mx                                                (3.13)

Here, λ  represents the rate of change of an age-structured population
having age-specific survivorship rates lx and age-specific reproductive

rates mx.  The general model for the Lotka-Leslie function does not have

a "closed-form" solution. That is, there is no way to write eq.(3.13) in
a linear form, that is to provide an expression stated as λ  = g(x). It is
thus necessary to solve eq.(3.13) for λ  by an iteritive procedure, i.e.,
by varying values of λ until one satisfies the equation. Because there is
no linear expression for a solution for λ , developing an expression for
the variance becomes very difficult. Bootstrapping then provides a
convenient approach. One only needs to set up the data on lx and mx in
tables, sample these tables of data with replacement, and calculate
values of λ from the samples. The percentile method then provides
convenient confidence limits.

In many instances, the samples available for calculations are too
small to make calculations from eq.(3.13) feasible. An alternative may
then be needed. A useful approximation (Eberhardt 1985) is:

                             λa -sλa-1 -lam [1 - (
s
λ) 

w-a-1
] = 0                                   (3.14)
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Here, a is the age at which full reproductive rate is achieved, la is
survival from birth to age a, s is survival beyond that age, and w is an
age at which calculations are truncated in order to compensate for the
effects of senility. This equation again must be solved by iteration,
and can readily be bootstrapped. The delta method can be used to study
the components of variance and thus to determine the effect of
increasing sample sizes for the several components on the variance
estimate for λ. In several examples, the delta method gives very much
the same variance estimate as bootstrapping. Another benefit of the
delta method calculations is that the partial derivatives serve to
indicate the relative importance of the several components, indicating,
for example, that small changes in adult survival have the maximum
effect on λ. Because there is no linear solution for λ , the delta method
has to be applied by using implicit differentiation. Solutions
appropriate for eq.(3.14) appear in the following references, which also
give details and result of the application of bootstrapping to this
complex function. Calculations for grizzly bears appear in Eberhardt et
al. (1994), for sea otters in Eberhardt (1995), for monk seals in
Gilmartin and Eberhardt (1995), and for manatees in Eberhardt and O'Shea
(1995). Selected examples appear in Chapter 11.

3.10 Exercises

3.10.1  Inasmuch as bootstrapping is a sampling procedure, additional runs of B
bootstraps will give slightly different results, even if B is large. Conduct a
bootstrapping check on the data of Example 3.1 to see how your bias ad jus tment
compares with the results given there. Use B=2000. Do 10 trials and r e c o r d
results on a summary sheet (don’t forget to use PASTE SPECIAL and VALUES o r
you may get a statement like “Circular References” or “Link to a n o t h e r
spreadsheet”). This should show that the bias is consistent, and that t h e
corrected value is a much better estimate of the true value. However, w h e n
there is an unbiased estimate based on theory (as in this case), one obv ious ly
should use that value. The bias estimate is important only when you don’t h a v e
an estimate that is known to be unbiased (which is often the case w i t h
ecological data, even though it might not be a widely recognized fact). Also
number the observations serially (1-10) and calculate the co r re l a t i on
coef f ic ients .

3.10.2 Bias corrections.
Use the data of Example 2.3 (calculations in Exercise 2.10.4) to further explore
bias corrections. In that example we used regressions of the natural logarithm
of number of survivors (Fig. 2.5) on year to estimate a survival rate (slope of
the regression line) and then transformed it back to an annual rate by
calculating y=exp(b). Bootstrap confidence limits were obtained and also
transformed back to annual rates. Use eq.(3.2) to examine the bias
 in transforming back. When there is an evident bias, one should examine the
confidence interval on the estimate to see if the bias is large relative to the
confidence interval.

                                                biasB^   = θ̂ *( .) - t(F̂ )                                               (3.2)
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3.10.3  Make a frequency distribution of z (eq.(2.9)) using the correlation
coefficients computed in exercise 3.10.1. Does this look like a normal
distribution as assumed in calculating confidence limits under the usual
theory? Compare your results with Exercise 2.10.5.

3.10.4  The regression bootstrap of Example 2.2 used parametric bootstrapping
in which deviations from a model fitted to the original data are bootstrapped.
In exercise 2.10.7 we tried bootstrapping the x,y pairs directly
(“nonparametric” bootstrapping) and got some strange-looking results.
However, larger samples (more x and y values) appear to give results
comparable to parametric bootstrapping. Efron and Tibishirani warn that the
parametric approach is “model-dependent”, i.e., if the model is wrong, the
results may be doubtfully useful. Hence, its worthwhile to repeat the exercise
using the data of Example 3.3. Doing this directly is cumbersome, so it is best to
use the program furnished in the Appendix. Compare your results with the
slope and confidence intervals given by the regression program in EXCEL. This
exercise is worthwhile in that ecologists use regressions with smallish samples
and the independent variables are not always known with certainty. There
don’t seem to be any guidelines as to sample sizes in such cases, so its wise to
use both parametric and nonparametric approaches and to check for bias (Eq.
(3.2)) if you want to be comfortable with your results. The frequency diagrams
of Exercise 2.10.7  were distinctly bimodal, making it clear that the
nonparametric approach is not advisable with only 10 pairs of observations.

3.10. 5    Example 3.4 gives the approach to jackknifing a regression line in
which logarithms of data on an index of bear abundance are fitted by linear
regression (Fig. 3.3) and the fit examined by cross-validation, with a check on
bias from eq.3.10. Complete the analysis just as in Example 3.4. Compute the
cross-validation error (CVE), jackknife standard error of the slopes, and
Biasjack of the slopes. Compare the jackknife standard error with that of the
slope computed with the usual regression analysis (given in EXCEL tools
menu). Also compare CVE with the residual mean square of the regression
ana lys is .

3.10. 6     Jackknifing was used in Example 3.10.5 because it is fairly easy to
apply and we could compute CVE of eq. (3.6) in the same operation. However,
bootstrapping has some advantages, and likely should be used to estimate bias
and confidence limits whenever it is feasible. Use the data of Example 3.10.5 to
conduct parametric bootstrapping to compute the bootstrap bias estimate of Eq.
(3.2) and 95% confidence limits on the slope. Use 1,000 bootstraps and
parametric regression bootstrapping (for convenience in calculations using
EXCEL – with 19 observations, I would be inclined to try both parametric and
non-parametric approaches). The nonparametric regression bootstrap can
readily and quickly be computed from a program in the Appendix.

3.10.7 The approach of Section 3.5 is most readily calculated by using a
programming language. However, it is feasible to do the calculations in EXCEL
if one is willing to devote several hours to the job. A program in the Append ix
will do the job in short order and should be used to repeat the results of Sect ion
3.5.
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